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Abstract

The perception of 3D space by mobile robots is rapidly moving from flat metric grid rep-
resentations to hybrid metric-semantic graphs built from human-interpretable concepts.
While most approaches first build metric maps and then add semantic layers, we explore
an alternative, concept-first architecture in which spatial understanding emerges from asyn-
chronous concept agents that directly instantiate and manage semantic entities. Our robot
employs two spatial concepts—room and door—implemented as autonomous processes
within a cognitive distributed architecture. These concept agents cooperatively build a
shared scene graph representation of indoor layouts through active exploration and incre-
mental validation. The key architectural principle is hierarchical constraint propagation:
Room instantiation provides geometric and semantic priors to guide and support door
detection within wall boundaries. The resulting structure is maintained by a complemen-
tary functional principle based on prediction-matching loops. This approach is designed
to yield an actionable, human-interpretable spatial representation without relying on any
pre-existing global metric map, supporting scalable operation and persistent, task-relevant
understanding in structured indoor environments.

Keywords: 3D perception; semantic modelling; scene graphs; robot perception

1. Introduction

Robots operating in human environments benefit from semantically rich, shared
representations of their surroundings. In recent years, 3D scene graphs (3DSGs) have been
used for this purpose, as complex data structures that represent scene objects as nodes and
their various relationships as edges [1]. When used to describe large fragments of space,
they are typically organised hierarchically, with higher levels encompassing larger spatial
aggregations [2]. The computer vision community has developed many algorithms and
DNN models that can be used to detect elements in the scene and their relationships, and
even to build the graph directly from complete views of the scene [3-5]. Very complex
graphs can also be built in real time using data captured by a human-operated robot, as
demonstrated in recent frameworks [6,7]. In most experiments, robots are typically used
passively, in a remote-controlled setup, to capture 3D data in large environments.

However, if robots are to use 3DSGs in real-time operations, they must build them
incrementally, starting from an empty representation when necessary, and proposing
actions that improve the current representation by reducing its uncertainty. These actions
must coincide with or compete with other requests from other high-priority tasks, forcing
the representational system to be opportunistic at its core. Scene graph construction should
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be driven by the robot’s need to understand its world and current task requirements. This
opportunistic process may leave objects partially defined for later refinement, requiring the
architecture to continuously update its world beliefs. This graph-building loop underlies
the control architecture, adapting to ongoing tasks while competing for hardware access.

In this paper, we introduce a concept-first architecture where autonomous agents, each
representing a spatial concept like room or door, cooperatively and asynchronously build
a 3DSG. This approach diverges from the classical metric-first paradigm by allowing the
robot to actively choose its next action to refine or expand its representation, building spatial
understanding directly from human-interpretable concepts. We model the world as a set
of rectangular rooms connected by doors. The robot is given a functional definition of the
room and door concepts, and the goal is to incrementally build a scene graph representation
of the environment by instantiating these concepts and relating their instances geometrically
and semantically. The graph is to be constructed directly from these concepts, avoiding
a previous free/occupied grid representation. The robot has a 3D LiDAR that provides
a stream of points from the scene. Finally, we use the CORTEX architecture [8,9] as a
robust, expandable framework for all algorithms and data structures. Figure 1 depicts a
schematic overview.
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Figure 1. An overview of the CORTEX architecture with the elements used in this work. The sub-
cognitive level on the left encompasses low-level perceptive and control components. The working
and long-term spatial memories are managed by the six agents depicted as brown shapes.

Our primary contribution is a novel system of asynchronous concept agents. Each
agent sustains the life cycle of its specific concept, actively creating, managing, and refining
instances to explain and predict real-world objects. Each concept agent in the architecture
behaves opportunistically, contributing to the construction of a global, shared representa-
tion. In turn, each concept agent accesses this shared representation to acquire contextual
information that constrains its creation and update processes according to the hierarchical
constraint-propagation principle, in which higher-level concepts guide the detection of
lower-level concepts. Our second contribution is a world model composed of connected,
local metric frames rather than a single global one. This work is primarily an architectural
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exploration that demonstrates how this organisation can build persistent, actionable rep-
resentations directly from concepts. Our third contribution is to develop an incremental,
scene-graph building system designed for real-time operation in a mobile robot’s control
architecture as an underlying representational dynamics adaptable to other concurrent
tasks. Jointly, the concept processes and the other elements in the architecture collaborate
to build and maintain a reliable scene graph that different tasks can use.

2. Related Works
2.1. From Geometric SLAM to Semantic and Hybrid SLAM

Classical geometric SLAM has been extensively studied and remains a cornerstone
for robot localisation and mapping; however, its lack of high-level semantic content limits
human-robot interaction, long-term robustness, and task-oriented reasoning [10,11]. To
address these shortcomings, numerous works have proposed augmenting metric maps with
semantic labels and object-centric landmarks, a family of methods commonly referred to as
semantic or metric—semantic SLAM [12-14]. Other approaches tackle persistent mapping
by emphasising the need for robust semantic reasoning in dynamic environments [15,16].
Similarly, CNN-based methods such as SemanticFusion [14] and Mask R-CNN extensions
(e.g., PanopticFusion) [17,18] have made dense semantic mapping feasible in (near) real-
time, bridging perception and mapping pipelines [19]. Surveys and overviews further
summarise trends and techniques in this area, covering pipelines that combine detection,
data association, and pose/landmark estimation [20,21]. Open-source libraries such as
Kimera demonstrate the practical integration of visual-inertial SLAM, dense reconstruction,
and semantic labelling to produce metric-semantic maps in real-time [22]. Although
existing methods successfully augment metric maps with object-level semantics, they follow
a metric-first paradigm. Our work departs from this by allowing the 3DSG to integrate
data based on high-level concepts, which form the primary organisational structure of
the representation.

2.2. 3D Scene Graphs and Dynamic Scene Graphs

The idea of representing a richer semantic and topological structure as a graph
grounded in 3D geometry was crystallised by Armeni et al., who introduced the 3D scene
graph (3DSG) as a unified hierarchical structure linking floors, rooms, objects, and cameras
in reconstructed buildings [1]. Subsequent works have extended and operationalised this
representation for robotics. Rosinol et al. introduced 3D Dynamic Scene Graphs (DSGs),
emphasising actionable perception by adding temporal and agent-centric layers and pre-
senting an automated spatial-perception pipeline to produce DSGs from visual—inertial
data [22]. Hydra and related spatial-perception systems build on these ideas and demon-
strate real-time 3DSG construction at scale, integrating segmentation, topological reasoning,
and loop closure into an online pipeline [2,7]. SceneGraphFusion proposed an incremen-
tal, learning-based strategy to predict 3DSG from RGB-D sequences using graph neural
networks and attention mechanisms suited to partial observations [3]. In parallel, Bavle et
al. explored situational graphs as a lightweight, navigation-focused variant of DSGs, high-
lighting their role in bridging semantic scene understanding and actionable planning [23].
Most state-of-the-art 3DSG systems, despite their rich hierarchical structures, ground their
representation in a global metric frame built from a dense reconstruction. Our architectural
contribution is a fundamental departure from this approach, as we construct the metric
frame based on instantiated spatial concepts themselves.
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2.3. Extracting High-Level Spatial Structure

Within scene graphs, a first level of spatial structuring is provided by the layout of in-
terior buildings, which condense the basic geometric structure of walls, floors, and ceilings.
Their integration into a richer topological and semantic representation enables long-term
reasoning and planning. More traditional approaches resort to the use of recognised
geometric algorithms like RANSAC on the point cloud generated by SLAM to identify
walls [24-26], similar to [27], where the Manhattan world assumption is added. Other
works formulate layout reconstruction as an optimisation problem [28], resorting to mesh-
based normalisation of input point cloud models and then using a constrained optimiser.
Their main advantage lies in their independence from large data sets and their geometric
accuracy in well-structured environments. However, they are sensitive to hyperparameter
tuning, occlusions, orthogonality assumptions, and sensor noise.

A distinct line of research leverages deep neural networks to infer complete room
layouts from single panoramic images, with notable examples including LayoutNet [29],
FloorNet [30], and HorizonNet [31]. These data-driven models exhibit strong generalisa-
tion capabilities and can produce geometrically coherent layouts at a low inference cost.
However, from a robotics perspective, their utility is constrained by two primary factors.
First, they are dependent on large-scale annotated datasets and often presuppose regular,
structured environments. More critically, they operate as ‘black-box’ systems performing
a single-shot inference. This monolithic approach offers no mechanism for incremental
refinement or reasoning about partial evidence. Consequently, these models struggle
with the ambiguity inherent in a robot’s typical starting condition—often a position with
limited visibility—a scenario where our concept-driven, hypothesis-validation loop is
specifically designed to address. While the choice of a specific detection algorithm can
significantly impact performance, our work’s primary contribution lies in demonstrating a
holistic, functional system. We, therefore, utilized straightforward detection methods to
allow the core principles of our architecture to be evaluated independently of their specific
perceptual components.

2.4. Incremental, Opportunistic, and Active Perception

While many 3D scene graph (3DSG) systems are validated on offline datasets, the
robotics community increasingly demands representations that are built incrementally and
refined through active perception for online operation. The principle of closing the plan-
ning—perception loop is well established in Active-SLAM, where robot actions are chosen
to reduce map uncertainty or gather task-relevant data [32,33]. This is complemented by
information-theoretic approaches that provide principled methods for selecting optimal
sensing actions under uncertainty [34,35].

More recent work on situational graphs frames scene understanding as the online
construction of optimizable, multi-layer representations (metric, topological, and semantic)
for navigation [23,36-38]. Collectively, these research efforts motivate architectures where
perception is not a passive aggregator of data, but an active process that deliberately seeks
information to validate or refute semantic hypotheses—such as the existence of a room or
the precise location of a door [33,39].

Our architecture embodies these principles by integrating affordances as context-
sensitive controllers within each concept agent. These affordances are pre-activated when
their operational preconditions are met. A central mission_monitoring agent executes tasks
by selectively activating affordances that guide the robot toward its goal, interleaving
these actions with others dedicated to constructing and maintaining the internal scene
representation. This mechanism provides the foundation for the incremental, opportunistic,
and active perception at the core of our system.
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2.5. Open-Vocabulary and Language-Grounded Scene Graphs

Recent advances in vision-language models (VLMs) have catalysed a new generation
of open-vocabulary 3D Scene Graphs (3DSGs), enabling robots to perceive and reason about
an open set of objects and relationships. The dominant pipeline for these systems typically
begins with class-agnostic segmentation of RGB-D frames, followed by the extraction and
projection of semantic feature vectors into a common 3D frame. The resulting semantically-
enriched point cloud is then processed, often with queries to a large language model (LLM),
to establish object identities and inter-object relationships.

While these methods demonstrate powerful capabilities for language-grounded query-
ing, our concept-first architecture diverges from this paradigm in several fundamental
ways, centred on the principles of incremental construction and the explicit modelling of
environmental structure.

A primary distinction is our commitment to incremental, online construction without
prior global maps. Systems like HOV-SG [40], for instance, require a complete metric map
of the environment as a prerequisite for extracting floors, rooms, and objects. Navigation is
then enabled by a permanent Voronoi graph of the total free space. In contrast, our approach
builds its understanding dynamically as the robot explores. Navigation is handled locally
on demand within the current room’s reference frame, while inter-room pathfinding is a
simple graph search in the long-term spatial memory.

Furthermore, our architecture prioritises the explicit modelling of spatial structure
and connectivity, whereas many open-vocabulary systems are fundamentally object-centric.
Works such as Open3DSG [41] and OVSG [42] excel at establishing rich relationships among
objects but do not acquire the containing room or the topological connectivity between
rooms as first-class entities in the graph. Our work, conversely, treats the “room” concept
as the primary semantic and geometric anchor, with the environment’s structure serving as
the backbone of the scene graph.

This focus enables our core principle of hierarchical constraint propagation, which is
architecturally distinct from the bottom-up process common to many VLM-based pipelines.
ConceptGraphs [43], for example, incrementally adds objects but must wait until an entire
sequence has been processed to generate object captions and relationships. Spatial relations
are first estimated by proximity and then refined by querying an LLM, a process that
prevents high-level concepts (such as a room’s walls) from actively constraining and guid-
ing lower-level perception (such as finding a door). Our top-down approach is designed
around this very principle of semantic constraint.

Finally, while the field is advancing towards capturing object affordances and func-
tional relationships, as pioneered by OpenFunGraph [44], our work provides the essential
spatial-semantic scaffolding for such reasoning. OpenFunGraph masterfully models in-
teractions between objects and their parts, but does not construct a representation of the
surrounding spaces or validate that the graph remains anchored to the world as the robot
moves. Our architecture is expressly designed to build and maintain this persistent spatial
representation, providing the stable, grounded context in which functional and task-level
reasoning can reliably occur.

2.6. Positioning of the Present Work

Most existing 3D scene graph construction approaches follow a metric-first paradigm:
They build dense occupancy maps or point clouds, then layer semantic information on top
through object detection and classification [3,6,7]. While effective, this approach concep-
tualises space primarily in terms of free/occupied regions—representations that enable
collision-free navigation but provide limited support for high-level reasoning, manipula-
tion planning, or human-robot communication. We explore an alternative concept-first
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architecture in which spatial understanding emerges directly from human-interpretable
concepts, without requiring prior metric representations. Our approach makes four key
departures from existing work. (i) Asynchronous concept agents, rather than sequential
metric-then-semantic processing, involves implementing concept classes (room and door)
as autonomous processes that run asynchronously within the CORTEX cognitive archi-
tecture. Each concept agent manages the complete lifecycle of its instances—from initial
detection through validation, maintenance, and execution of affordances—competing op-
portunistically for robot resources. (ii) Hierarchical constraint propagation is where room
instantiation provides geometric and semantic constraints that significantly improve door
detection efficiency and robustness. Unlike unconstrained analysis of occupancy grids,
doors are searched within the constrained space of validated room walls, leveraging spatial
relationships inherent in indoor environments. (iii) World model of local metric frames
is where the global representation, managed by long-term spatial memory (LTSM), is a
topological graph connecting local, concept-centric metric frames. The robot localises itself
relative to the current room’s frame, not a global world frame. This architectural pattern
is a key distinction from systems like Hydra, which, despite their real-time performance,
still ground a hierarchical scene graph in a global metric frame. Our contribution lies in
exploring this alternative world model structure, which may offer benefits in scalability
and human interpretability. (iv) Architectural vs. algorithmic contribution conveys that
this work should be understood as an architectural exploration rather than an algorithmic
one. We deliberately use simple, well-understood perception methods (e.g., Hough trans-
forms) to focus attention on the system’s organisational principles. The core claim is not
that our perception modules are state-of-the-art, but that an architecture of asynchronous,
communicating concept agents can effectively build an actionable and persistent scene
graph. While we currently focus on predefined concepts, we envision this architecture as
a foundation that could be extended to synthesise the code of new concept agents using
generative models.

3. Methods
3.1. Architectural Motivation

Before describing the CORTEX implementation, we clarify our motivation for concept-
first spatial representation. Traditional robotic mapping conceptualises space using oc-
cupancy grids—binary free/occupied classifications that enable path planning but pro-
vide limited semantic content. While sufficient for navigation, these representations
offer little support for (i) human-robot communication—explaining robot decisions in
terms of “occupied cells” rather than “rooms” and “doors”; (ii) high-level task planning
requiring reasoning about functional spaces and their relationships; (iii) manipulation
constraints—understanding that objects belong to rooms and inherit spatial constraints;
and (iv) knowledge transfer—communicating spatial understanding between robots or
to humans.

Concept-first representation addresses these limitations by grounding spatial under-
standing in human-interpretable entities from the outset. Rather than adding semantic
layers post hoc, the robot builds its world model directly through concept instantiation,
enabling transparent reasoning about spatial relationships and their functional implications.
The central insight of our approach is hierarchical constraint propagation: Once a room
concept is instantiated, it provides geometric boundaries (walls), functional relationships
(containment), and semantic priors (door locations) that constrain and improve subsequent
concept detection. This differs fundamentally from unconstrained analysis of metric data,
where door detection must consider the entire perceptual field rather than focusing on
geometrically and semantically relevant regions. This architectural principle naturally
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extends to future object detection—furniture constrained to floor planes, paintings to walls,
or items to table surfaces—progressively narrowing search spaces through accumulated
spatial context, reducing computational complexity, and improving detection reliability.

At this stage, the potential efficiency and robustness gains should be understood as
intended outcomes of the architectural principle rather than as quantitatively demonstrated
results. The idea of reducing the search space through hierarchical constraint propagation
follows well-known strategies in perception and planning, and our architecture is designed
to incorporate this mechanism in a concept-driven manner.

3.2. The CORTEX Architecture

CORTEX is a cognitive robotics architecture initially designed to explore how the
robot, the environment, and their interaction can be efficiently represented and anchored.
A general scheme is shown in Figure 1. It is organised into two blocks: the cognitive level,
a collection of specialised memories interconnected by processes called agents, which are
responsible for exchanging information among them, and the subcognitive level, which
maintains a bidirectional connection with the robot’s body. Additional details on the
architecture can be found in [8,9,45].

The working memory (WM) depicted as a large green circle in Figure 1 is a distributed
graph data structure implemented to provide very low latency and high throughput
to a large set of connected processes that can edit it. The content represents the robot
and its environment, which is built and maintained by specialised agents. Nodes in the
graph represent objects in the world or the robot itself, and edges represent relationships
among them: geometric transformations in SE(3) with uncertainty (called RT edges) or
logic predicates. Agents run asynchronously, can edit the graph, and react to changes as
part of their local goals. Table 1 summarises the types and attributes of elements in the
scene graph. In the configuration used in this paper, the robot_body agent reacts to specific
changes in the graph by controlling the robot’s movements. The mission_monitoring agent
updates the graph to ensure the robot’s actions are validly serialised. Finally, the x_concept
agents are pre-defined concept-aware processes that will attach to compatible objects in the
environment. They have access to the subcognitive stream of perceptual data and try to
explain out the parts of it that match their concept class (e.g., room or door in this case) by
predicting it in the next step.

A key feature of the CORTEX architecture is its management of concurrency. The
agents operate asynchronously and communicate entirely through edits to the shared
working memory graph. To prevent race conditions, the WM’s underlying implementation
ensures that all node and edge modifications are atomic operations. This design choice
ensures data integrity without requiring complex and potentially high-latency locking
mechanisms. Agents function as reactive processes, monitoring the graph for relevant state
changes and posting their own updates in turn. This event-driven, pub-sub-like interaction
model, built upon a foundation of atomic edits, is fundamental to ensuring a consistent
and coherent state across the distributed system.

Table 1. Scene graph schema definition.

Element Type Key Attributes Description
Nodes: Semantic and Geometric Entities
Represents the primary spatial and semantic entity. A
Node room ID, geometry, confidence room is defined as a container constructed from a set

of associated wall and corner nodes.
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Table 1. Cont.
Element Type Key Attributes Description
ID, geometry (plane A primary structural component of a room. It acts as a
Node wall . ! .
equation), parent_room_ID  geometric reference and a container for door nodes.
. A key geometric feature representing the intersection
Node corner D, geomet.ry (3D point), of walls. Corners serve as stable landmarks for robot
confidence — crs p
localisation within a room'’s reference frame.
ID . . .
. , geometry (pose., Represents an articulation point or gateway between
dimensions, anchor_points), . ; P b
Node door . spaces. It is geometrically “hung” from a parent
confidence, state
wall node.
(open/closed)
Edges: Relationships Between Nodes
RT (Rigid Represents a geometric parent—child relationship with
Edge 8 SE(3) transform, covariance uncertainty. Establishes the local reference frames
Transform)
(e.g., room — wall, wall — door).
A semantic link established when the system
predicate (doorl_ID, identifies that two door nodes, instantiated in
Edge match . .
door2_ID) different rooms, represent the same physical door,
enabling loop closure.
' . predicate, attributes relating A temporary, tas.k-orlented edge originating from.the
Edge has_intention robot agent. It signals a request to perform an action

to the status of the mission
on a target node (e.g., cross a door).

3.3. Agent Interaction and Coordination via the Working Memory

Agent collaboration is achieved implicitly through the shared working memory

(WM) graph.

¢ Communication: Agents communicate by creating, modifying, or deleting nodes
and edges. For instance, the Cyy0m agent signals its intent to explore by inserting a
has_intention edge into the WM.

*  Coordination: Agents are data-driven, reacting to specific patterns in the graph. The
Caoor agent, for example, remains dormant until a current_room node is present and
validated in the WM. This ensures a natural, hierarchical order of operations (find
room, then find doors).

¢  Conlflict Resolution: A dedicated mission_monitoring agent acts as a central arbiter.
It observes all has_intention proposals from other agents. It prioritises them based
on the robot’s current high-level task, resolving potential conflicts (e.g., choosing to
navigate towards a goal rather than further explore a room).

3.4. Overview of the Spatial Representation Construction Process

The robot’s primary goal is to build an actionable scene graph representation of
its environment through incremental concept instantiation and validation. This pro-
cess involves several asynchronous agents, primarily Croom and Cgy,,, that cooperatively
construct a shared spatial model within the working memory (WM), supported by the
robot_body, energy_optimiser, and long_term_spatial_memory agents, and orchestrated by the
mission_monitoring agent.

The representation construction follows a concept-first paradigm, in which spatial
understanding emerges from the instantiation and anchoring of semantic entities rather
than from metric grid mapping. The robot begins with no prior spatial knowledge and boot-
straps its understanding through active exploration. Upon initialisation or after crossing a
door, the Croom agent attempts to instantiate a room concept by detecting corners in the 3D



Appl. Sci. 2025, 15, 11084

9 of 27

LiDAR point cloud P € R3. Successfully instantiated rooms serve as reference frames for
subsequent spatial reasoning, with the robot’s pose continuously updated relative to the
current room via factor graph optimisation.

For this initial exploration, we adopt the Manhattan world assumption—rooms are
rectangular with orthogonal walls—which simplifies geometric reasoning while remaining
applicable to many real-world indoor environments. Each room maintains a centre-based
coordinate frame with child frames for its four walls, forming a kinematic tree that struc-
tures spatial relationships. Doors must lie within wall boundaries, with at most one door
per wall, and each door connects exactly two rooms. Figure 2 illustrates the reference

systems used in the scene and their hierarchy in graph form.

Figure 2. Reference frames used for the elements in the scene graph. On the (left), the grey rectangle
represents the model room that best fits the corners. TR denotes the transformation from the room
to the wall, so a point p in the wall’s frame is transformed to the room’s frame as g = T p. On the
(right) is the kinematic tree inserted into the WM , where T9,, denotes the transformation from the
wall to the corresponding right corner in the wall reference system.

The concept lifecycle encompasses detection, initialisation, validation, and mainte-
nance phases. During initialisation, concept agents propose intentional actions (e.g., nav-
igating toward a room’s estimated centre or to a vantage position in front of a door) to
gather sufficient observational evidence. These actions are mediated by has_intention edges
in the WM and require approval from the mission_monitoring agent before resource allo-
cation. The initialisation process accumulates measurements across multiple robot poses,
building temporal pose graphs that resolve geometric ambiguities through optimisation.
Once sufficient evidence confirms adherence to concept priors, instances transition from
provisional to permanent status in the WM. Figure 3 shows an example of a structural
modification in the scene graph. The transition occurs when a room is detected, initialised,
and inserted into the graph, causing the robot node to change its parent. The new RT
edge is now updated by the energy_optimizer agent, minimising the differences between
measured and nominal features.

Critical to this architecture is the synchronisation achieved through graph-based com-
munication. The Cg,,, agent remains dormant until a current room exists in the WM,
ensuring doors are always grounded within validated spatial contexts. This hierarchi-
cal dependency—doors require rooms, rooms enable localisation—creates a natural or-
dering that prevents premature or unconstrained concept instantiation. Similarly, the
energy_optimiser agent continuously monitors the WM for validated corner and door mea-
surements, incorporating them as landmarks in its localisation factor graph only after
concept agents confirm their validity through successful matching against predictions.
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corner_0_1

corner_1_1
corner_0_measured

wall_1_1

corner_2_1

wall_3_1

corner_3_1

room_measured

Figure 3. Graph state transition. The robot starts as the graph’s initial frame (root is a dummy node)
and transforms to hang from the new room when it is inserted in the graph. corner_x_measured are
nodes that hold the measurements of the corners matched with the corresponding nominal ones on
the right.

Through this distributed, asynchronous process, the robot incrementally constructs a
scene graph that directly supports navigation, manipulation planning, and human com-
munication without requiring intermediate metric representations. The resulting graph
maintains both geometric precision (through continuous localisation) and semantic rich-
ness (through concept instantiation), providing an actionable spatial model grounded in
human-interpretable entities.

Assumptions and Limitations

The architecture explicitly acknowledges operational boundaries, for example, severely
cluttered environments where furniture occludes wall geometry, non-rectangular spaces
violate Manhattan assumptions, or dynamic scenes with moving obstacles make success-
ful concept instantiation difficult. Rather than attempting exhaustive coverage of edge
cases, the system maintains probabilistic beliefs and can defer instantiation when evidence
remains insufficient. Despite this cautious approach, the current implementation faces
two critical failure modes: false positives, in which incorrect models satisfy the valida-
tion criteria and are accepted as valid representations, and model invalidation, in which
initially correct models become inconsistent as additional exploration reveals previously
unobserved geometric features. We are developing backtracking mechanisms to revert to
previous stable states when model confidence degrades, as well as dynamic restructuring
capabilities to adapt existing representations when new evidence contradicts established
beliefs. This work is discussed further in the Conclusions and Future Works section. The
mission_monitoring agent can interrupt ongoing initialisation processes to pursue higher-
priority goals, leaving partial representations for later refinement. This opportunistic
approach allows the robot to build useful, if incomplete, spatial models while remaining
responsive to task demands.

3.5. Conceptual Agents and Intentional Actions

A conceptual agent A, is an autonomous process responsible for the instantiation,
maintenance, and refinement of a specific concept class C. € C, where C denotes the set
of all concept classes manageable by the robot (e.g., Croom, Cdoor)- Each concept class C; is
defined as a tuple C. = (F,®, Ay, Z, L), where

e Fisthe set of f; measurable properties that define the geometry of the concept (e.g.,
height, width, centre, corners, anchor points, etc.).

e  ®is aset of prior values over the properties that determine when a new instance is
created. (e.g., height-to-width ratio).
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* Ay is the set of affordances associated with the concept. In this case, the affordances
are visit for the room and visit and cross for the door. The visit intention is notified to
the mission_monitoring agent with the insertion of a has_intention edge in the graph,
while the cross affordance is notified with the creation of a special node aff_cross_x
(denoting an affordance to cross door x) hanging from the associated door. If the
affordance is accepted by the mission_monitoring agent, the robot_body agent executes
the action until completion.

* 7 istheinitialisation process for a new instance candidate.

¢ Listhe life cycle of the concept instances, defined as a behaviour tree that monitors
and controls the transitions between internal states.

The lifecycle ( £ ) is implemented as a behaviour tree that continuously orchestrates
four primary stages of concept instance management (see Figure 4). First, the agent
evaluates whether existing nominal instances in the WM can explain incoming sensor
measurements through forward prediction and matching. When sensor data cannot be ade-
quately explained by current instances (matching error exceeds threshold), the initialisation
process (1) is triggered, accumulating evidence through intentional actions until sufficient
confidence permits instantiation of a new nominal element in the WM. For established
instances, the agent maintains their validity by computing predicted feature positions based
on current robot pose estimates, enabling these predictions to serve as landmarks for robot
localisation through the energy minimisation process. Concurrently, when affordances are
active, the agent monitors their execution status through the robot node, tracking action
progress until completion or interruption by the mission monitoring agent. This cyclic
process ensures that concept instances remain grounded in sensory evidence, provides
stable reference frames for navigation, and supports opportunistic exploration through
affordance execution.

Propose
> >
No—»| Initilize s

2
xecution
ovi
s
ooy ). Sensorata .
" Explained?
-
o one?

*
Yes/Interrupted

Figure 4. Flow chart showing the life cycle of a concept. The two outgoing lines of the first decision
box cover the insert new instance and update existing instances situations.

3.5.1. Room Concept Agent

Croom implements the room concept class. The class provides a parameterisation of
a room in terms of centre, angle, and dimensions, Froom = [Xc, Yc, &, w, d, ], as well as the
equivalent description by its corners ¢; € C. Froom components are illustrated in Figure 5.
Room instances are actively searched when the robot starts or when it crosses a door.
As explained in the next subsection, the long_term_spatial_memory agent asynchronously
recovers previously known rooms and inserts them into the WM.

Room corners are detected using a simple yet efficient method described in
Algorithm 1. This algorithm, along with the door detection method presented later, does
not represent state-of-the-art (SOTA) performance but provides a sufficient baseline for
demonstrating the proposed architectural principles.
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Figure 5. F;o0m components diagram. Before the room is established, two reference systems are
established: the origin reference system and the robot reference system. In the case of the robot, x.
and y. denote the position of the centre of the room relative to the robot, while « is the angle relative
to the longest side. Conversely, w denotes the length of the shorter side, d represents the length of the
longer side, and # signifies the height of the room.

Algorithm 1 Corners Detector Algorithm

P pi = P(P/(P/k)/zmin < Pz < Zmax

N g e

10: Return C

The algorithm begins by (1) filtering the 3D LiDAR field P to retain only those points
p; within a vertical slice defined by zmin < pz < Zmax, reducing noise from floor and
ceiling artifacts; (2-5) computing the mean and covariance matrix to estimate the room
centre ¢ and room’s dimensions 5; (6) applying a Hough Transform, using OpenCV’s point
set implementation to directly process the point cloud without rasterization, in order to
extract structural lines; (7) retaining candidate walls L* if their lengths exceed a threshold
Liin= 1m; and (8,9) checking all pairs of lines (/;,/;) for 71/2 angle crossings to select
candidate corners ¢. The algorithm returns a list of corners.

The Croom agent continuously runs the corner detection algorithm. When a set of
detected corners satisfies the instantiation conditions ®,om, and there is no room object
in the WM already, the Coo agent inserts a temporary room node into the WM, linked to
the robot node via a has_intention relation. Upon approval by the mission_monitoring agent,
computational and physical resources are allocated, and the robot initiates a navigation
action toward the estimated centre of the room, computed as the centroid of the currently
measured corner points. This action develops locally in the robot’s frame.

At the beginning of the action, the robot’s position is taken as the initial zero frame. As
the action proceeds, new poses are concatenated from the robot’s odometry readings and
stored in a local buffer. The measured corners are also stored in the current robot frame.
When the action is completed, the concept agent evaluates whether the accumulated data
is sufficient; if so, it initiates a post-processing phase. Otherwise, sampling continues from
the new vantage point. The mission_monitoring agent can revoke the affordance at any time.
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As no external frame is available, the agent builds a temporal pose graph in the
GTSAM (https:/ /github.com/borglab/gtsam, accessed on 16 September 2025) framework
using data accumulated during the action. The measured corners serve as landmarks, and
because they are observed from multiple robot poses, the graph acquires the necessary
redundancy. The optimal graph that minimises the sum of prediction errors provides a
set of corrected landmarks and poses. From the set of corrected corner poses, a histogram
is built to select the most probable corners that comply with the room constraints. The
concept agent applies additional priors at this point to potential candidates, discarding
rooms that are too large or too small.

The process ends with inserting the room into WM, along with its walls and corners,
and an RT edge that anchors the robot to the room. This last step requires some elaboration,
since a rectangle lacks an intrinsic orientation. The temporal pose graph was anchored to
the action start pose. The selected set of corners has coordinates in that frame, and the robot
now occupies the last pose of the graph. Using these data, we want to set the room frame
as the initial frame and compute the robot’s pose with respect to it. A simple solution is
to take the position and size room parameters from the selected corners, and compute the
rotation, or equivalently, an enumeration of the corners that assigns index zero to the first
corner to the left of the robot heading direction.

3.5.2. Door Concept Agent

The Cj,0r agent controls the life cycle of instances belonging to the door concept class.
Doors are parametrised in F,,, as pairs of anchor points defining the door ends. They have
two affordances, A £f: visit and cross. @y, is the range of admissible distances between the
anchor points, currently set to 0.5-1.3 m.

We propose a simple door detection algorithm, shown in Algorithm 2. It begins by
(1) assuming that doors lie within the walls W of the room and filtering out any point
p; whose distance to the walls exceeds a predefined threshold ¢ = 0.15 m; (2) extracting
a polar 2D scan p = p;(¢,k = K), where p is the measured distance for each angular
value ¢ at a fixed height index K = 1.7 m, in our experiments; (3) taking the derivative
0= g—g to identify abrupt changes in the distance dimension; (4) applying the Heaviside
step function H to yield a binary peak map where a value of 1 indicates a potential edge
and zero otherwise, and a value of A = 0.5 m represents a distance threshold between
continuous points; (5) computing all combinations of pairs of detected points; (6) testing
each candidate against the width constraint and the wall constraint that ensures that the
line segment, which is defined between detected edge points p and g, lies within the set of
wall points; and (7) returning the set D of valid detected doors.

Algorithm 2 Door detector algorithm
1. pj=p € PAdist(p, W) <¢

2. p = pi(¢, k=K)
L5 9
3 0= En
£ P=H(p-A) =" Ho=A
1 ifp>A
~ 1N P
5: {di,j} = <2>
6 Dmin < ”"ﬂ,]” < Dmax

. d;; € {D}if
i,j { }1 {di,j_p+t(q_p)’ Oétﬁlfﬁqew

7: Return D
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When the current room is detected in the WM, the C,,,, agent starts running the door
detection algorithm. It silently returns if existing nominal doors can explain all the pairs of
anchor points detected in the point cloud. When a new door is detected, a process similar
to the one described before starts, but with some differences. A provisional door, labelled
as door_x_pre to signify its preliminary, unvalidated status as a concept instance, is inserted
into WM hanging from its containing wall, and a has_intention edge is inserted between the
robot and the door. Figure 6 shows how these changes occur in the scene graph.
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Figure 6. Main stages (sequential steps from 1 to 8) in constructing the scene graph during exploration,
reflecting transitions as different concept instances are initialised and affordances are executed. See
text for a detailed explanation.

Once the mission_monitoring agent assigns resources, the visit affordance is executed
by the robot_body agent. The robot navigates towards a point located 1 m from the door’s
centre. But now the robot is being localised in the room’s frame by the energy_optimiser agent
running a global optimisation over the scene graph. To benefit from this situation, the Cy,,,
agent only updates the matching between the measurements and the provisional anchor
points and waits for the end of the action. The energy_optimiser agent recognises those
objects as landmarks and includes them in the minimisation. When the action finishes, the
fine-tuned anchor points are set as permanent, and their nominal coordinates are computed
and inserted in the RT edge connecting the wall to the new door. The door name is changed
to door_x, removing the pre suffix. The nominal door now provides two additional fixed
landmarks for the energy_optimiser agent to update the robot’s pose in the room. Finally,
a node connected to the door with an has edge is added to show that a cross affordance is
available for the mission_monitor agent to include in its planning logic.

3.6. Long-Term Spatial Memory

The proposed architecture deliberately sacrifices global metric consistency in favour
of local precision and long-term scalability. This is managed by the CORTEX long-term
spatial memory (LTSM) agent, whose primary function is to maintain a topological graph
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of locally consistent, concept-centric metric frames. The LTSM stores previously visited
rooms and their connections via doors. This information is maintained in a persistent graph
data structure using the igraph library (https://igraph.org/, accessed on 16 September
2025). The agent operates asynchronously over the WM, removing visited rooms when the
robot has entered and initialised a new one, and bringing (i.e., predicting) known rooms
back when the robot is about to enter a previously explored one. The precise timing of
these actions is explained below.

When the robot enters an unfamiliar room, it needs to retain some information about
the room it is leaving until a reliable connection can be made between the two. The agent
stores doors as dual objects with coordinates in both rooms’ frames. This is the minimal
information needed to maintain an actionable graph of connected rooms. As the agent
observes the crossing, it waits until the new room is initialised following the procedure
described before, and only then sets the new room as the current room and removes the
old one from the WM. The required synchronisation is done through the edition of node
attributes and edges in the WM, since this is the only way for agents to communicate.

The insertion of a known room is simpler since this agent is anticipating what Croom
will see. The critical variable is the orientation of the new room relative to the robot, since
the success of the corner-matching process, which determines acceptance, depends on it.
The information is taken from the door dual coordinates. The new room is oriented by
first transforming its corners to the door’s coordinate frame. Then, we identify both door
frames as being at the same point in space, and use this to transform the corners back to
the old room’s coordinate frame and, finally, to the robot’s frame. In this way, the robot
can match the new room’s nominal corners with fresh measurements, since both are in
the same frame, and confirm the recognition of the new room. Hereafter, the old room is
removed, and the robot is changed in the scene graph to hang now from the new room.

Figure 7 shows a metric representation of the rooms in the four-room scenario, with
the rooms the robot has previously traversed shown in green, and the room it is currently
located in shown in red. Because the robot is currently executing the cross affordance
during the capture, a momentary state lag occurs: The system has not yet loaded the map
data for the destination room and, therefore, remains localized within the room of origin.
Additionally, a green dot indicates the target position the robot is heading towards after
crossing the door. The agent can create a metric representation of the graph at any time,
as shown in the bottom-left image. The evident alignment errors are due to noise injected
into the synthetic LIDAR sensor and the robot’s displacements, and could be corrected
by constrained optimisation of the rooms’ centres, sizes, and orientations, with the doors
serving as fixed, shared points between them. It is left for future work, as it does not
interfere with the goals of this paper. The red circle on the right shows the result of a
loop closure between rooms 1 and 4 through their shared door. Currently, the LTSM agent
computes a loop closure by projecting the robot’s pose into all rooms as it approaches a
new one. A more robust method based on visual descriptors and the objects stored in the
room is under construction.

Scalability Through Hierarchical Memory Organisation

The LTSM component addresses a fundamental scalability challenge in robotic spatial
representation: Maintaining complete world models in active memory becomes computa-
tionally prohibitive as environment size increases. The CORTEX architecture’s memory
organisation provides several mechanisms that enable operation in arbitrarily large envi-
ronments while preserving real-time performance. First, the architecture employs dynamic
memory management based on the principle that robots require detailed spatial represen-
tations only for their immediate operational context, thereby avoiding the computational
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burden of maintaining and continuously optimising a single, monolithic global map. As
the robot navigates multi-room environments, the LTSM dynamically loads rooms into
working memory based on current location and planned actions, while unloading distant
or irrelevant spaces. This selective memory management maintains bounded computa-
tional requirements regardless of total environment size, enabling real-time operation in
large-scale facilities such as office buildings, hospitals, or multi-floor residential complexes.
Second, the LTSM maintains persistent topological graphs representing complete known en-
vironment structures, stored using the igraph library. These graphs naturally accommodate
arbitrary environment topologies—from linear corridor sequences to complex branching
structures with multiple floors, wings, and interconnected spaces. Third, the memory
architecture supports hierarchical spatial organisation, with concepts extending beyond
individual rooms. Spaces can be organised into floors, buildings, or functional regions (e.g.,
“residential wing”, “laboratory area”). This hierarchical organisation enables efficient navi-
gation planning across multiple scales while maintaining the human-interpretable structure
that motivates the concept-first approach. High-level spatial queries can be resolved at
appropriate abstraction levels without requiring detailed geometric computation. And
fourth, context-dependent predictive loading activates when the robot approaches transi-
tion points (doors leading to known rooms) and anticipates spatial context requirements by
pre-loading relevant representations. This includes not only the target room’s geometry
and contained objects, but also connected spaces that might become relevant for navigation
alternatives or task planning. This predictive loading strategy ensures smooth spatial
transitions while minimising working memory overhead and maintaining responsiveness.

_J Robot| .’ :

door_0_1_2

door_1_0_2

room_4
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Figure 7. LTSM room representation during a transition from a known room to another known room
via an uncrossed door. The scenario used in the Webots simulator for the experiments is shown in the
upper-left image. The down-right area shows a metric reconstruction of the graph on the right. The
right image shows the network generated and stored by the LTSM agent after the robot has toured
rooms 1 to 4. The red circle marks the loop closure between rooms 4 and 1 as an edge connecting
door_3_0_1 and door_1_2_4.

Taken together, these mechanisms ensure that the system’s computational complexity
remains bounded and does not grow with the size of the total explored environment. A
formal asymptotic analysis is outside the scope of this architectural work; however, a
qualitative analysis indicates that high-frequency, computationally intensive operations
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(e.g., factor graph optimisation, point cloud processing) are constrained to entities within
the currently active room in working memory. By dynamically loading and unloading
spatial contexts, the LTSM prevents the unbounded growth of active nodes and factors in
real-time processes. Consequently, the architecture’s computational load is not a function
of the global environment’s size but instead depends on the local complexity of the robot’s
immediate surroundings. This design choice is fundamental to ensuring long-term opera-
tional performance and scalability, while preserving the transparency and explainability
advantages of the concept-driven approach.

3.7. Navigating Through the Scene Graph

Once a nominal current room is established, the energy_optimiser agent updates the
robot’s position at a fixed frequency of 10 Hz. This agent maintains a GTSAM factor graph.
It is initialised with the nominal room corners and the robot’s pose in the WM. As fresh
odometry data arrive from the robot sensors, the agent inserts new robot poses into the
graph up to 30 nodes, applying a FIFO policy. The sliding-window version of iSAM2 in
GTSAM computes the optimal robot pose after the graph modifications, accounting for the
required changes to the covariance matrix.

At each insertion of a new robot pose, the energy_optimiser agent verifies if there are
measured corner values in the WM that the corresponding concept agent has validated.
This validation results from a matching process between the projection of the nominal
corner y onto the robot’s frame and the current measurement x. We use the Mahalanobis
distance dj to perform this critical pre-association check against a statistical threshold,
where d) is calculated as

—1
da(x,y) = ¢ )T (2572) )

If the match is validated, a factor (cost function) is created in the graph. As illustrated

in Figure 8, this factor (represented by f) formalizes the statistically weighted difference
between x and y (g, — yy). In this metric, Ly represents the covariance of the measurement,
and Ly represents the total propagated uncertainty of the predicted feature, combining the
uncertainty of the nominal corner’s position and the robot’s current pose. Validation is
determined by inspecting a Boolean attribute stored in the corner measurement node of
the WM.

nominal

measurement

70 EX + E -
d]LI(X; y = Tx b) = \/(p’x - lJ’y)T <Ty> (l’l’x - l'l‘y)

Figure 8. Schematic view of a robot displacement starting at the black circle and advancing through

the upper left quadrant. Small grey squares with an f are factors, i.e., positive functions measuring
the difference between two variables, that link the robot to the objects’” parts, corners, and anchor
points. Plain grey squares are fixed constraints between elements. The sum of all differences accounts
for the system’s free energy and is absorbed by the set of past robot poses depicted as red triangles.
As more objects are modelled in the WM, more factors are created, making the robot’s localisation
more robust.
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If a corner has been validated, it is incorporated into the factor graph as a measurement
associated with its corresponding landmark. This measurement is connected to the pose
node whose timestamp most closely matches the corner observation’s timestamp. Similarly,
if a door has been instantiated in the WM, its nominal position is inserted into the graph as
a landmark. Door measurements are handled in the same way as corner observations.

4. Results

We have designed a series of preliminary experiments to evaluate the architecture
using the Webots simulator. The scenarios include a digital replica of our Shadow mobile
robot [46], with realistic white noise added to the synthetic LIDAR and simulated delays
in command execution. All detection parameters and thresholds used in the following
experiments, such as those in Algorithms 1 and 2, were tuned empirically to suit this
specific robotic setup and the characteristics of our test environments.

It is worth noting that these experimental scenarios are simplified, structured envi-
ronments primarily intended as a proof-of-concept to demonstrate the architecture’s core
mechanics. Within these constraints, we included rooms of varying dimensions and with
different numbers of doors to explore the system’s ability to handle some topological
variety, while maintaining controlled conditions for initial validation. Future work will
extend these evaluations to more complex layouts, dynamic obstacles, and a broader range
of sensor noise levels.

A first experiment, Figure 6, shows the three main stages in the evolution of the scene
graph within the WM. Red circles denote interest zones referenced in the text.

*  Room acquisition: Following the sequences shown in Figure 6 as red ellipses, in Zone
1, the robot lacks a room representation. The C,,om agent is aware of the absence of
a room node and starts the initialisation process. This is reflected in the WM by the
appearance of the has_intention link between the robot Shadow and room_measured,
Zone 2. The Cypom waits until the mission_monitoring agent authorises the action.
When the robot reaches the room’s centre or sufficient data have been gathered, the
Croom agent adds the room to the graph. The coordinate frame changes during this
transition, and the robot’s pose is expressed relative to the room’s reference frame.
This relationship is captured by the RT link between the room and the robot, as shown
in Zone 3. From now on, this link is updated by the energy_optimiser agent, which
performs continuous optimisation over the room’s corner observations.

*  Door acquisition and affordance execution: With a current room established in WM,
the Cj00, agent can now proceed with detecting doors. Zone 4 shows a new door
proposal door_3_0_1_pre and an action proposal in the edge has_intention. The robot
moves close to the door, and the agent changes the door status from provisional to
acquired, removing the pre suffix. Additionally, the agent inserts an affordance node
aff_cross_3_0_1 hanging from the new door to notify the mission_monitoring of that
action’s availability. This is shown in Zone 5.

*  New room acquisition and door matching: Executing the door-crossing affordance,
Zone 6, takes the robot into a new room, triggering a second initialisation process.
Upon completion, the Cro0, agent inserts a new room node, room_2, and its constituent
elements into Zone 7 of the graph. If the room had been previously known, the LTSM
agent would instead load the stored room, bypassing the initialisation step. Zone 8
illustrates how doors are associated across rooms immediately before the LTSM agent
removes the previously visited room and sets the new one as the current. At this point,
the door obtains the dual coordinates that place it in both rooms. The LTSM agent
maintains a local graph of all known spaces and the open transitions between them,
while adding and removing rooms as the robot explores its environment.
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A second experiment demonstrates a more extended activity within a 10-room scenario.
Following the steps described in the previous experiment, the robot incrementally builds its
local and global representations and, at some point, closes a loop connecting several rooms.
A video of the full experiment can be downloaded from the site (https://cloudiepcc.unex.
es/index.php/s/Zq2eY9fLeDa7itP, accessed on 16 September 2025). All agents and the
components in the sub-cognitive module run in different cores of the onboard computer, an
Intel 19 13th generation processor with an NVIDIA RTX-A2000 GPU (NVIDIA Corporation,
Santa Clara, CA, USA) , and can sustain the nominal sensor acquisition rates, 20 Hz for the
3D LiDAR and 30 HZ for the 360° camera (Ricoh Company, Ltd., Tokyo, Japan).

The third experiment places the robot Shadow in a real scenario, navigating between
two rooms separated by a door. Figure 9 shows the two rooms with their usual furniture
and the room layouts extracted from them. Note that processing only the upper part of
the 3D LiDAR field, z > 170 cm, eliminates most of the non-wall points, and the large
structures detected with the Hough lines provide enough information to complete the
correct layout. We are exploring ways of removing more of the remaining points that
do not belong to the walls, for instance, by filtering the 3D point cloud with a semantic
segmentation DNN. The robot has remained located with respect to the rooms’ frames for

four-hour navigation sessions, with maximum positioning errors of 15 cm.

Room A and B

.
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)
:
3

M

Room A layout Room B layout

Figure 9. Real test scenarios with their respective layouts, red corners and green walls detected over
the LiDAR profile.

4.1. Measurement Error Analysis

To quantitatively assess the geometric accuracy of the generated floor plans, a metric
in both rooms and door widths was also negligible, demonstrating the system’s adherence
to the simulator. A visual representation of this superposition for one of the test runs can
be seen in Figure 10.
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The aggregated results from multiple generation runs are summarised in Table 2. The
results indicate strong positional and dimensional fidelity. The low mean error in room
placement suggests that the generated global map effectively maintains the correct spatial
relationships among rooms. The standard deviation for this metric was minimal, suggesting
high consistency and low variance across different outputs. Dimensional errors for both
rooms and door widths were also negligible, demonstrating the system’s ability to adhere
to the specified architectural constraints. For the room dimensions, the errors are correlated
with the wall thickness of the scenario, which is 200 mm. To prevent the propagation of wall-
thickness-related errors, this factor is explicitly accounted for during the generation of the
global map. These quantitative findings confirm the qualitative assessment, demonstrating
that the generation model produces geometrically sound, accurate floor plans with minimal
deviation from the target structure.
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Figure 10. Visual comparison between the ground truth floor plan and a generated result after the
automatic alignment process. The ground truth is shown in red, while the generated layout is shown
in violet. Rooms are represented as rectangles, and doors are marked with circles.

It is crucial to highlight that while the quantitative analysis reveals marginal geometric
deviations, the most relevant outcome of this evaluation is the consistency and correctness
in the construction of the topological map. Despite the minor positional and dimensional
errors detailed in Table 2, the system successfully identified the correct topological struc-
ture, that is, which rooms connect to each other and through which doors, in all of the test
cases. This success in inferring connectivity is fundamental to the robot’s navigation and
planning tasks, validating that the proposed approach generates environment representa-
tions that are not only geometrically accurate but also, more importantly, functionally and
topologically reliable.
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Table 2. Error analysis summary.

Metric Mean Error (mm) Standard Deviation (mm)
Room position error 34.1 16.2
Room dimension error 201.5 8.8
Door position error 37.5 13.9
Door width error 17.4 16.7

4.2. Computational Performance Analysis

This section analyzes the computational performance of the architecture, focusing
on the CPU and memory consumption of the main processes. The data were recorded
during an experimental run that included the construction of a scene graph across several
rooms, providing insight into the system’s operational efficiency and resource allocation.
As shown in Figure 11, the CPU usage for most agents that constitute the architecture
remains stable over time. The graph highlights the activation of the door detection process,
marked by a notable increase in its CPU consumption, which occurs once a room model
has been stabilised. This increased load is attributed to the agent’s task of managing and
validating multiple door instances within the active room.
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Figure 11. CPU usage over time for the main processes running during the graph construction process.

Table 3 summarizes the memory consumption for the main architectural processes.
The results demonstrate the system’s high efficiency, with all agents operating with a
minimal memory footprint. The mean RAM usage for each process is consistently low,
ranging from 0.22% to 0.33%. Furthermore, the low standard deviation across all processes
indicates stable and predictable memory consumption, a crucial feature for long-term
autonomous operation on resource-constrained robotic platforms.

Table 3. Resource usage summary: memory (total system RAM: 64 GB).

Mean RAM Usage Mean RAM Usage

Process (%) (MB) Std. Dev. (%)
Room detector 0.30 197 0.00
Door detector 0.28 184 0.04
Robot body 0.31 203 0.03
LTSM 0.33 216 0.05
Energy optimiser 0.22 144 0.04

Mision monitoring 0.22 144 0.04
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5. Noise Sensitivity and Detection Mistakes

The robustness of concept-first spatial representation depends critically on reliable
feature detection and consistent model validation. Two primary failure modes affect the
current implementation: sensitivity to sensor noise and detection mistakes that manifest
either immediately or after additional exploration.

5.1. Noise Sensitivity

The quality of the final spatial representation degrades as sensor and odometry noise
increase. While systematic evaluation of noise sensitivity requires extensive parametric
studies (planned for future work), preliminary observations from our simulations reveal
several noise-related challenges. LIDAR noise affects corner detection reliability, particu-
larly when points near wall intersections are displaced beyond the algorithm’s clustering
threshold. Similarly, odometry drift compounds during the initialisation phase, potentially
causing misalignment between the selected corner set and the actual room geometry. The
GTSAM optimisation partially mitigates these effects by distributing error across the pose
graph, but at high noise levels, incorrect room models can be accepted as valid.

Future work will quantify these relationships through controlled experiments varying
(i) LiDAR point cloud noise (¢ = 0.01 m to 0.1 m), (ii) odometry drift rates (0.5% to 5% of
distance travelled), and (iii) angular measurement uncertainty (0.5% to 5%). The expected
outcome is a noise tolerance envelope within which the concept-first approach maintains
acceptable spatial accuracy.

5.2. Detection Mistakes and Model Revision

The current lifecycle implementation assumes that once validated, concept instances
remain fixed. This rigid approach fails to handle two critical scenarios that occur in practice.

Early Model Mistakes: Despite validation, incorrect models may still satisfy the
instantiation criteria due to partial occlusions, symmetric ambiguities, or sensor limitations.
For example, a large L-shaped space might initially be interpreted as a rectangular room
when only one branch is visible. The current architecture lacks mechanisms to revise these
early commitments when contradictory evidence emerges.

Temporal Model Invalidation: Initially correct models may become inconsistent as
exploration reveals previously unobserved features. A room model validated from limited
viewpoints might prove incompatible with newly discovered walls or openings. Without
dynamic revision capabilities, these inconsistencies accumulate, degrading the overall
representation quality.

Addressing these limitations requires extending the concept lifecycle with continuous
model fitness evaluation and revision mechanisms. This would provide the corrective
capabilities that the current system lacks. We envision a more flexible lifecycle incorporating
the following.

1.  Continuous Fitness Monitoring: Each concept instance maintains a running fitness
metric quantifying the agreement between predicted and observed features. A persis-
tent low fitness score would serve as the trigger to invalidate the model and its child
concepts, forcing a re-evaluation. This metric would track both recent observations
(for rapid response) and historical consistency (for stability).

2. Graduated Response Strategy: When fitness degrades below threshold, the system
would engage a hierarchical response: (i) local parameter adjustment for minor dis-
crepancies, (ii) structural revision for significant geometric changes, and (iii) complete
model replacement when the current instance becomes untenable.

3. Backtracking and Alternative Hypotheses: The architecture would maintain alterna-
tive concept instantiations as latent hypotheses, enabling rapid switching when the
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primary model fails. This requires extending the concept agents to support probabilis-
tic beliefs over multiple competing interpretations. A particle filter would be a good
starting point.

4. Graceful Degradation: When no satisfactory model exists, the system should maintain
partial representations rather than forcing incorrect instantiations. This might involve
temporary metric patches or undefined regions marked for future exploration.

These extensions would transform the current deterministic lifecycle into a probabilis-
tic framework where concept instances compete, evolve, and occasionally fail. While com-
putationally more demanding, this flexibility is essential for robust operation in real-world
environments where perfect sensing and complete observability cannot be guaranteed.

6. Discussion

The experimental results confirm the viability of our concept-first architecture for
building actionable scene graphs. Due to the fundamental architectural differences, a direct
quantitative comparison with existing metric-first systems is not our primary focus. Instead,
this section contextualises our contributions and limitations by qualitatively comparing
our approach against leading alternative frameworks.

Our architecture’s primary advantage is its independence from a pre-existing global
metric map, which contrasts with frameworks like Hydra that ground their 3D scene
graph (3DSG) in a dense mesh. By building a world model from connected local reference
frames, our system can offer greater scalability while avoiding the need to maintain a
single, monolithic metric representation. However, a key trade-off of this design is that
our sparse, concept-based representation lacks the dense geometric fidelity of metric-first
systems. While this can be a disadvantage for low-level tasks such as navigation and
collision avoidance in cluttered, unstructured environments, it is important to note that a
metric grid can be created for each room when necessary to support these functions.

Our work prioritises explicit modelling of environmental structures—such as rooms
and walls—as first-class entities in the graph. This enables our core principle of hierarchical
constraint propagation—using the geometric context of a room to guide the search for
a door—a top-down mechanism distinct from the primarily bottom-up, object-centric
approach of many open-vocabulary systems. The clear drawback is our reliance on pre-
defined concepts, which limits our semantic flexibility compared to open-vocabulary
systems that can perceive and ground an open set of objects and relationships. However,
this intentional design choice ensures that our architecture remains deterministic and
interpretable. In contrast to the “black-box” nature of deep learning-based detectors used
in many open-vocabulary systems, our approach provides clear, explicit mechanisms for
reasoning about the environment’s structure.

7. Conclusions and Future Works

This work presents an architectural exploration of concept-first spatial representation
for mobile robots. By implementing room and door concepts as asynchronous agents within
the CORTEX cognitive architecture, we demonstrate that semantic scene graphs can be
built incrementally without requiring prior metric maps. The key innovation is hierarchical
constraint propagation, where room instantiation provides geometric and semantic priors
that improve door detection efficiency and robustness compared to unconstrained metric
analysis. While our current implementation is limited to rectangular rooms in structured
environments, the architectural principles—such as asynchronous concept agents, direct
scene graph construction, and hierarchical constraint propagation—extend naturally to
more complex spatial concepts and irregular geometries. We intentionally employ simple
detection algorithms (e.g., Hough transforms and gap analysis) to emphasise architectural



Appl. Sci. 2025, 15, 11084

24 of 27

rather than algorithmic contributions. More sophisticated perception methods would
enhance system performance while preserving the core organisational principles.

An important avenue for future research is to extend the architecture to multi-robot or
multi-agent scenarios. While our current work is scoped to a single robot, a shared WM
and LTSM across multiple agents could, in principle, enhance global graph consistency
by exploiting inter-robot detections as additional constraints. This would help mitigate
aggregated sensor noise, but also raises significant challenges in data association (e.g.,
ensuring that one robot’s ‘room_5" is correctly matched with another’s ‘room_2’), commu-
nication latency, and distributed optimisation under heterogeneous sensing conditions.
Addressing these challenges will be key to making the architecture scalable to cooperative
multi-robot exploration.

This work leaves many open research topics, most of which are already under way:
(a) extending the system to handle non-rectangular rooms; (b) replacing room and door
detection algorithms with more robust data-driven learnt functions; (c) using differentiable
programming in the characterisation of object geometries so they can be adjusted online
through the minimisation of a cost function; (d) incorporating additional concept classes
(e.g., furniture, household objects) into the scene graph; and (e) and implementing a more
robust loop closure mechanism based on visual descriptors and objects stored within rooms.

The final goal is to demonstrate that concept-first architectures can provide transparent,
human-interpretable spatial representations that support both autonomous robot operation
and effective human-robot collaboration in real-world environments. This exploration
represents an initial step toward cognitive architectures that reason about space using
human-meaningful concepts rather than metric primitives, potentially enabling more
natural and explainable robotic spatial intelligence.
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